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A high-order spectral method originally developed to simulate nonlinear gravity 
wavewave interactions (Dommermuth & Yue 1987a), is here extended to study 
nonlinear interactions between surface waves and a body. The present method 
accounts for the nonlinear interactions among NF wave modes on the free surface and 
NB source modes on the body surface up to an arbitrary order M in wave steepness. 
By using fast-transform techniques, the operational count per time step is only 
linearly proportional to M and NF (typically NF % NB). Significantly, for a (closed) 
submerged body, the exponential convergence with respect to M ,  NF (for moderately 
steep waves), and NB is obtained. To illustrate the usefulness of this method, we 
apply it to study the diffraction of Stokes waves by a submerged circular cylinder. 
Computations up to M = 4 are performed to obtain the nonlinear steady and 
harmonic forces on the cylinder and the transmission and reflection coefficients. 
Comparisons to available measurements as well as existing theoretical/comp- 
utational predictions are in good agreement. Our most important result is the 
quantification of the negative horizontal drift force on the cylinder which is fourth 
order in the incident wave steepness. It is found that the dominant contribution of 
this force is due to the quadratic interaction of the first- and third-order first- 
harmonic waves rather than the self-interaction of the second-order second-harmonic 
waves, which in fact reduces the negative drift force. 

1. Introduction 
In an earlier work (Dommermuth & Yue 1987a, hereinafter denoted DY), a 

powerful numerical method was developed for modelling nonlinear gravity wave 
interactions. This method is formally based on the Zakharov equation (Zakharov 
1968 ; Crawford et al. 198l)/mode-coupling (Phillips 1960; Benney 1962) idea. The 
method models interactions up to an arbitrary order M in wave steepness and follows 
the evolution of a large number (typically N - lo3 per dimension) of wave modes 
through a pseudospectral (Fornberg & Whitham 1978) treatment of the nonlinear 
free-surface conditions. The method exhibits exponential convergence with M and N 
for waves up to -80% (ICA - 0.35) of Stokes limiting steepness (beyond this the 
convergence is only algebraic), and its efficacy for a variety of wave interaction 
problems is now well established (see also Dommermuth & Yue 1987b). 

In this paper, we extend the high-order spectral method to the study of nonlinear 
wave interactions with a submerged body. The velocity potential at  each order m = 
1, . . . ,M is considered to result from the combined influence of a dipole distribution 

t Present address : SAIC, 10260 Campus Point Drive, San Diego, California, USA. 
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on the free surface and a source distribution on the body surface. These distributions 
are in turn expressed as series of spectral modes, in this case Fourier series for closed 
submerged bodies and periodic (computational) boundary conditions. For NF and NB 
modes respectively on the free surface and body, the convergence of the solution with 
NF,  NB and M remains exponentially rapid. This spectral accuracy allows us to obtain 
high-resolution results for the nonlinear forces on the body and the high-order 
diffracted wave field. 

As a special application, we consider the nonlinear diffraction of Stokes waves by 
a submerged circular cylinder. This is a well-studied problem for which a number of 
established theoretical, computational and experimental results are available. Using 
conformal mapping, Dean (1948) found, to  leading order in wave steepness, that a 
circular cylinder held fixed under waves does not reflect waves, and the transmitted 
waves merely experience a change in phase but not amplitude. Ursell (1950), using 
a multipole expansion, found the complete linear solution and showed that it was 
unique. Following Ursell’s approach, Ogilvie ( 1963) showed that the linear potential 
leads to a mean (second-order) vertical force but that  the horizontal mean force at  
second order vanishes identically. This last result is in contrast to experimental 
observations (e.g. Salter, Jeffrey & Taylor 1976) that a free cylinder just awash 
experiences a negative drift force which causes i t  to move towards the wavemaker. 

Longuet-Higgins (1977) suggested that this negative drift force can be attributed 
mostly to  wave breaking, and, to a lesser degree, to the second-harmonic component 
of the transmitted wave. The measurements of Miyata et al. (1988) and Inoue & 
Kyozuka (1984) do not support all of Longuet-Higgins’ predictions. They found that 
as the cylinder was moved closer to the free surface, which led to  more intense 
breaking, the negative horizontal drift force was actually reduced and ultimately 
reversed sign. Using a Stokes expansion, Vada (1987) solved the second-order 
(frequency-domain) diffraction problem but was unable to calculate all the terms (at 
fourth order) of the non-vanishing mean horizontal force, since third-order potentials 
are involved (see 94). For the second-order oscillatory forces, however, Vada’s results 
were in good agreement with the measurements of Chaplin (1984), thereby confirming 
Chaplin’s suggestion that inviscid flow models would be good for Keulegan-Carpenter 
numbers less than about 2 for second-order forces. As pointed out by Chaplin, 
however, this is not necessarily true for first-order forces (see 94.3). 

A number of fully nonlinear (time-domain) computations of this problem have also 
been attempted. Vinje & Brevig (1981) used the mixed Eulerian-Lagrangian method 
of Longuet-Higgins & Cokelet (1976) to  study the forces acting on a cylinder under 
a breaking wave, but their results were only qualitative. Using a similar method, 
Cointe ( 1989) obtained higher-order harmonic forces and transmission coefficients 
but did not focus on the question of the mean horizontal drift force. Stansby 6 
Slaouti (1983) used the method of Zaroodny & Greenberg (1973) to study the forces 
on cylinders under waves and found that a steady state was rapidly approached. No 
conclusions were made, however, regarding the steady forces. 

For the reflected and transmitted waves, the theoretical prediction of Dean (1948) 
and Ursell (1950) of no leading-order reflected waves was confirmed by the 
measurements of Chaplin (1984) to  even higher order for mild waves. Grue (1991) 
performed a careful set of experiments which showed that the transmitted waves are, 
however, significantly affected by nonlinear wave interactions over the submerged 
body. Motivated by these results, there are a number of recent theoretical 
demonstrations (Friis 1990; McIver & McIver 1990; Wu 1991) of the fact that the 
reflection coefficient is identically zero to second order. The most general result to 
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date is the work of Palm (1991), who proved that the leading-order component of any 
harmonic of the reflected wave also vanishes. These analytical results and 
experimental observations are confirmed by our numerical computations of the high- 
order (up to M = 3) reflected and transmitted waves in $4. 

In $2, the mathematical formulation of the high-order spectral method for 
wave-body interactions is given. The implementation of the numerical method is 
described in $3. Sources of numerical errors are discussed, and extensive convergence 
tests are also presented there. In $4, numerical computations for the nonlinear 
diffraction of a submerged circular cylinder are presented and compared to available 
measurements and theoretical predictions. Results are given for the nonlinear mean 
and harmonic amplitudes of the diffracted waves and oscillatory forces, with a 
special emphasis on the horizontal drift force on the cylinder. 

2. Mathematical formulation 
We consider the diffraction of nonlinear gravity waves by a fixed, submerged body 

in deep water. (Without loss of generality, and in anticipation of later application, 
we assume the body to be a circular cylinder.) A global Cartesian coordinate system 
(x,y) is located at  the mean water level directly above the cylinder centre with y 
positive upward and x positive in the direction of wave propagation. A local 
cylindrical coordinate system ( r ,  8) is placed at  the centre of the cylinder, which is at 
a depth H below the mean water level. Thus, r2 = Z ~ + ( ~ + H ) ~  and 6 is measured 
counterclockwise from positive x. We assume that the flow is irrotational, and that 
the fluid itself is homogeneous, incompressible, and inviscid. 

The flow is described by a velocity potential @(x, y, t )  which satisfies Laplace’s 
equation within the fluid, and vanishes at  deep water, V@ +. 0 as y -+ - co. Following 
Zakharov (1968), we define the surface potential 

(1) 

where y = q(x , t )  denotes the free surface, which we assume to be continuous and 
single-valued. In  terms of GS, the kinematic and dynamic boundary conditions on 
the free surface are respectively 

@%, t )  = @(x, 7(x, t ) ,  t ) ,  

7t+@:7z-(1 + v 3  @& 7, t )  = 0, (2 a) 

and @;+gy+;(@s,)2-g( 1 +qi)  7, t )  = 0 (2 6 )  

for zero atmospheric pressure, where g is the gravitational acceleration. On the 
cylinder boundary, a no-flux condition 

@,(R, 8, t )  = 0 for 0 < 8 < 2n: (3) 

is specified, where R is the radius of the cylinder. 
For initial conditions, the surface potential @(x, 0) and elevation y(x, 0) are 

prescribed. This completes the initial-boundary-value problem for @. For com- 
putations, we impose periodic conditions far upstream and downstream, say at  
x = &L. 

Following DY, we assume that @ and 7 are O(B)  quantities, where B ,  a small 
parameter, is a measure of the wave steepness. We then expand @ in a perturbation 
series in E up to order M :  

M 

@(x, y, = c @(m)(x, y, t ) ,  (4) 
m=l 
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where ( )(m) denotes a quantity of O(em).  We further expand each @(m) evaluated on 
y = 7 in a Taylor series about y = 0, so that 

M M-m 1 

( 5 )  
@S(X, t )  = @(X, 7, t )  = c c - 'I 7 az @ y x ,  0, t ) .  

m=l z=o z !  ay 
The method we develop will, in principle, be able to account for nonlinearities up to 
an arbitrary order M in E .  In practice, however, (5) places a limit on the maximum 
steepness of the free surface we can consider. In particular, the validity and 
convergence of (5) is limited by the radius of convergence (from y = 0) of @, which 
cannot extend beyond the first singularity in the analytic continuation of @ above 
Y = 'I. 

The nonlinear free-surface conditions (2) can be considered as evolution equations 
for @' and 7, provided that the surface vertical velocity @Jx,q,t) can be obtained 
from the boundary-value problem. Thus, at a given instant of time, we can consider 

and 7 known, and treat (5) as a Dirichlet boundary condition for the unknown @. 
Expanding (5) and collecting terms at  each order, we obtain a sequence of boundary 
conditions for the unknown @(m) on y = 0: 

@ ( m ) ( ~ ,  0, t )  =f("), m = 1,2 ,  . . . , M ,  (6) 

(7) 
m-l 'Iz where f ( l )  = GS, f ( m )  = - C - CD("-~)(X, 0, t ) ,  m = 2,3, . . . ,M.  

I !  ay 
The Dirichlet condition (6), in addition to @(m) being periodic over -L  < x < L ,  
CD:~)(R, 0, t )  = 0 for 0 < 0 < 2n, and + 0 as y-f - 00,  defines a sequence of 
boundary-value problems for 

To solve for @(m), we distribute dipoles ,dm)(x, t )  over the mean position of the free 
surface, and sources d m ) ( O ,  t )  over the surface of the circular cylinder. Noting that 
,dm) and dm) are 2L- and 2n-periodic in x and 0 respectively, we expand them as 
Fourier series : 

m = 1,2, . . . , M ,  in the domain y < 0. 

n=O n-0 

where real parts of the complex quantities are implied. The unknown perturbation 
potential @(m) is then given in terms of the modal amplitudes ,uL")(t) and aLm)(t): 

m cc 
@(m)(X> y, t ,  = pLm)(t) YFn(X, y) + C cLm'(t) ylg,(X, y), (9) 

n=o n=o 

where YFn and YBn are influence functions of the nth mode dipole and source 
distributions on the free surface and body respectively. These influence functions are 
given in terms of the Fourier integrals: 

YFn(~ ,  y) = rLein"z'/LG,.(x. y; x', 0) d d ,  

YBn(x, y) = [einrC(7,0;R,0')Rd0', 

where G(x, y ; x', y') is the 2L-periodic source potential in two dimensions : 

G(x, y;x', y') = glog [ sin2 (iii) - + sinh' (%)I. 
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With this construction, (9) satisfies Laplace's equation and all the boundary 
conditions with the exception of those on the mean free surface and the body. 
Substituting (9) into (3) and (6) for each order, the modal amplitudes ,@)( t )  and 
akm)(t) are determined successively for m = 1, . . . ,M, in terms of C P ( ~ ) ( X ,  0, t ) ,  which 
ultimately is given by the known @'(x,t) and q(x, t )  according to (7) .  

are solved up to the desired order M ,  
the vertical velocity on the free surface is given by 

After the boundary-value problems for 

The vertical derivatives here (and in (7)) are obtained in terms of the modal 
amplitudes : 

Thereafter, higher derivatives are found by using Laplace's equation (e.g. @iy) = 
-@kT), @;?; = - ( $ h m ) ) x x , .  . .), and the x-derivatives are easily evaluated in the 
Fourier space. The evolution equations (2) can then be integrated for the new values 
of @' and y. The process is repeated starting from initial conditions. 

The potential on the body is available from (9), and the pressure on the cylinder 
can be evaluated according to Bernoulli's equation : 

where p is the fluid density. The instantaneous force on the body is obtained by direct 
integration of (14). 

3. Numerical method 
3.1. Implementation 

The time simulation of the nonlinear wave-body problem up to an arbitrary order 
M consists of three main steps. Beginning from initial values for GS and 7, at each 
successive time step : (i) solve the boundary-valuh problem for the perturbation 
velocity potentials CP(~)(Z,  y, t ) ,  m = 1, . . . , M ;  (ii) evhluate the vertical velocity at 
the free surface @,(x, q, t )  ; and (iii) integrate the evolution equations (2) forward for 
@'(x, t + At) and q(x, t + At) ; and the process is repeated. 

In  practice, the numbers of Fourier modes for the dipole and source distributions 
are truncated at some suitable numbers, say, NF for ,dm) and NB for dm). Note that 
since ,dm) and a(,) are in general smooth periodic functions of x and 0 respectively, 
the convergence of (8 )  with NF and NB is exponentially rapid, as is demonstrated in 
$3.3. Given the boundary-value problems for @(,), m = 1, . . . , M ,  the modal 
amplitudes ,ukm)(t), n = 0, . . . ,NF, and akm)(t), n = 0,  . . . ,N,, are determined by 
satisfying the Dirichlet and Neumann conditions at NF andN, equally spaced control 
points on the mean free surface and body respectively. The resulting NF +NB linear 
equations can be formally represented as 
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where [C,,], [C,,], [C,], and [C,,,] are respectively theNF xNF, NF x NB, NB xNF, and 
NB x NB modal influence matrices given in terms of the basis functions ; and bccrn)}, 
{a(m)}, the vectors of the unknown modal amplitudes pLrn), n = 0, . . . , NF, and aLrn), 
n = 0,  . . . , NB. Solving these equations, we obtain, again formally, 

where [T,] (NB x N F ) ,  [qf] (NF x NF), and [T,,] (NF x N B ) ,  are related to the inverses of 
the influence matrices in (15). 

Once {p'")} and {a'")} are obtained, the perturbation vertical velocities at  the 
control points on the free surface follow from (13), which take the form 

(17) {@y> = [Jy3P(")> + [W,I{~(")L 

where [ W,] (NF x NF), and [ W,] (NF x NB) are known matrices given by (13) in terms of 
the basis functions. 

In practice, the boundary-value problems are solved using a pseudospectral 
approach, wherein all the spatial derivatives are evaluated in the spectral 
representation, while nonlinear products (such as those in (7)) are computed in 
physical space at the discrete control points. The rapid transformations between the 
representations are affected by fast-Fourier transforms (FFTs). 

It is important to note that in the present high-order method, the [!PI and [m 
matrices in (16) and (17) are functions of the mean geometry only. For the diffraction 
problem, then, they are independent of time and need to be evaluated only once for 
the entire simulation. More significantly, since for typical applications (especially for 
three-dimensional problems) NF % NB in the spectral approach, the NF x NF matrices 
[Tf] and [W,] need not be explicitly realized as the contributions [ T , f ] { f ( m ) }  and 
[W,]b(rn)} can be evaluated in O(NFlnNF) operations via FFT. Consequently, the net 
computational effort is approximately proportional to NF and not Ng. Specifically, 
the total operational count of the method is [O(MNFlnNF)+O(MNFNB)] per time 
step, with an initial set-up effort of [O(NENF) + O(NBNF InN,)]. 

With the surface vertical velocities thus obtained from (17) and (12), the nonlinear 
evolution equations (2) can be integrated as a coupled set of nonlinear ODES. We 
employ the fourth-order Runge-Kutta scheme which requires twice as many 
evaluations as the commonly used multi-step predictor-corrector (e.g. the Adams- 
Bashforth-Moulton) methods of the same order but has a somewhat lower global 
truncation error and a larger stability region (see e.g. Dommermuth et al. 1988). 

For the diffraction problem, we choose as initial conditions exact deep-water 
Stokes waves of steepness B = kA (2A = qmax-qmin), wavelength h = %/N,, i.e. N ,  
complete waves in the periodic domain [ - L,  L], and period T. To calculate the initial 
values q(x,0) and @(x,O), we follow Schwartz (1974), but solve the mapping 
(Schwartz' equation 2.6) by direct numerical iterations. 

3.2. Error considerations 
The main sources of computational error for the present high-order wavebody 
simulations are : (i) errors due to truncation in the numbers of Fourier modes NF, NB, 
and the perturbation order M ;  (ii) error due to the finite (periodic) computational 
domain for a given simulation time, T, ; (iii) amplification of round-off and truncation 
errors; (iv) aliasing errors of the pseudospectral method; (v) errors due to numerical 
time integration; and (vi) for estimates of mean and harmonic force coefficients etc., 
errors due to the finite simulation time, T,, of the initial-value problem. 
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Errors due to truncation of modes NF, NB, and order M 
For sufficiently smooth 7 and @, the numerical errors in the Fourier 

representations of 7, as, ,u(m) and dm) vanish exponentially as NF and NB+ co. 
Similarly, for mild nonlinearities, the truncation error after order M is O(eM+l ) ,  and 
the convergence is exponential with increasing M .  As pointed out after ( 5 ) ,  such 
convergence ceases beyond a certain wave steepness. For regular Stokes waves, the 
maximum wave steepness for exponential convergence of the method is found to be 
e = ICA - 0.35 (see DY table 1) .  The corresponding maximum local slope is eL = 
(d~/~z) , , ,  - 0.38. In  the presence of a submerged body, the incident Stokes wave 
steepness E is neither the limiting nor useful parameter due to local wave steepening 
over the body. Using E~ instead, our present calculations with a body confirm the 
result of DY based on Stokes waves. It is important to point out that converged 
results (not necessarily exponentially fast) for large local slopes up to eL - 1.5 can 
and have been obtained in the present simulations (see also DY figures 2 and 5 ) .  

Error due to the Jinite computational domain 
For a computational domain fixed relative to wavelength and body dimension, 

the solution in the near field of the body will eventually be distorted due to 
'reflections ' from the periodic boundaries as the simulation time Ts is increased. This 
error is avoided by successively increasing the length of the periodic domain 
(increasing N ,  keeping ICA, kR and ICH constant) until the quantities of interest no 
longer vary (see $3.3). We remark that with the O(NF) efficiency of the present 
method, the computation cost increases only linearly with N,. 

Amplification of round-off and truncation errors 
In any computational model without dissipation, nonlinear interactions cause 

energy in the lower modes to cascade to higher modes which eventually accumulates 
at  the highest wavenumbers retained in the model. As pointed out in DY, this is 
accompanied by an amplification of numerical error in the modal amplitudes which 
increases with the mode number. This combined effect is the root cause of large- 
wavenumber instabilities in our nonlinear simulations. To avoid such instabilities, 
we follow DY and apply an ideal numerical low-pass filter in the Fourier space: 

1 for n < odv, 
0 for n >  dF' A,(n,4 = 

Typically, we apply A,  with a = 0.8 to the spectra of 7 and @' every five time steps. 

Aliasing errors 
In a pseudospectral approach, the product h = f . g ,  represented respectively by 

Fourier modes h,, f,, gnr n < N ,  is performed in physical space at  equally spaced 
points. This results in aliasing errors due to the finite Fourier representations. It is 
well known that the best approximation (in the mean-square sense) to the product 
is the so-called alias-free sum (e.g. Orszag 1971). To obtain this, we double the 
number of Fourier modes and the number of collocation points to UV, calculate the 
product H = FG, as before in physical space, where (F%, G,) = (f,, g,) for In1 < Nand 
(F,, G,)  = ( 0 , O )  for N < In I < 2N, and define the alias-free product, h, by h, = H ,  for 
In] d N .  For products involving two or more terms, the multiplication is done 
successively, where each factor is made alias-free before multiplying by the next 
term. 
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N ,  M = 2  M = 3  M = 4  

8 -1.0650 -1.0750 -1.0800 
16 -1.0784 -1.0876 -1.0907 
32 -1.0800 - 1.0890 -1.0920 

TABLE 1. Convergence of the normalized horizontal drift force, Fz/pgAzcz, on a submerged circular 
cylinder with increasing number of wavelengths N,  of the periodic domain and for different order 
M. kA = 0.04, kR = 0.4, H/R = 2; and NF = 64Nw, NB = 256, T/At = 64, ro = 5T. 

NB M = 2  M = 3  M = 4  

64 -1.0656 -1.0845 -1.0880 
128 - 1.0778 - 1.0869 - 1.0900 
256 - 1.0784 - 1.0876 - 1.0907 

TABLE 2. Convergence of the normalized horizontal drift force, l?z/pgAzcz, on a submerged circular 
cylinder with increasing number of body modes NB and order M. kA = 0.04, kR = 0.4, H/R = 2 ; 
and N ,  = 16, NF = em,, T/At = 64, r0 = 5T. 

Errors due to numerical time integration 
The fourth-order Runge-Kutta scheme we use is conditionally stable for the 

linearized equation for gK,,,At2 < 8 ,  where K,,, is the maximum grid (Nyquist) 
wavenumber. This should be a necessary condition for the nonlinear problem. The 
local truncation error of the fourth-order Rung-Kutta is O(At5) ,  so that the global 
truncation error for Ts = O(1) is fourth-order in At. 

Errors in the estimation of mean and limit-cycle force coeficients 

obtain this from the initial-value simulation, we define for definiteness 
One of the main interests of this study is the mean drift force on the cylinder. To 

- 
F(70) = 1 r T F ( t )  dt, 

‘0 

where F( t )  is the time-dependent force on the cylinder, T the fundamental period (of 
the incident wave), and T~ a time interval selected so that limit-cycle values are 
obtained. The (rapid) convergence of P with 70 is an important and desired property. 

3.3.  Numerical convergence tests 
Systematic tests are performed to verify the accuracy and convergence of the present 
method. For specificity, we consider only the horizontal (mean) drift force F’’ on the 
submerged circular cylinder. This offers a severe test on the accuracy of the high- 
order method since the horizontal drift force is zero up to second order (Ogilvie 1963) 
and its magnitude is (at most) fourth order in the incident wave steepness. 

Table 1 shows the results for the horizontal drift force for increasing N,, keeping 
kA, kR and kH fixed. For N, = 16, Fz shows convergence up to three significant 
figures. The convergence with number of body modes, NB,- keeping NF and other 
parameters fixed, is shown in table 2. For a given order M ,  Fx converges to its limit 
exponentially fast as NB is increased, although NB needs to be sufficiently large for 
the exponential convergence with M to take place. Similar rapid convergence with 
respect to the number of free-surface modes, N F ,  and with order M is displayed in 
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E N,,/N, M = 2  M = 3  M = 4  

32 - 1.0479 
0.04 [ 64 - 1.0784 

128 - 1.0804 
32 -0.9399 

0.08 [ 64 - 1.0083 
128 - 1 .W72 
32 -0.8276 

0.12 [ 64 -0.8977 
128 -0.9102 

-0.7365 
-0.7512 0.16 { ii 

- 1.0520 
- 1.0876 
- 1.0898 
-0.9617 
- 1.0435 
- 1.0432 
-0.8713 
-0.9722 
-0.9643 
-0.8152 
-0.8620 

- 1.0550 
- 1.0907 
- 1.0930 
- 0.97 17 
- 1.0561 
- 1.0588 
-0.8885 
- 1.0079 
-0.9910 
-0.8427 
-0.9438 

TABLE 3. Convergence of the normalized horizontal drift force, FZ/pgA2e2, on a submerged circular 
cylinder with number of free-surface modes N,  and order M for different incident wave slopes 
E = kA. kR = 0.4, H / R  = 2 ;  and N,  = 16, NB = 256, T/At = 64, ro = 5T. 

rO/T M = 2 M = 3  M = 4  

0 -5.8477 -5.9392 -5.9414 
1 -0.9742 -0.9811 -0.9821 
2 -1.0724 -1.0847 -1.0869 
3 -1.0877 -1.0919 -1.0941 
4 -1.0662 -1.0916 -1.0926 
5 - 1.0784 - 1.0876 - 1.0907 

TABLE 4. Convergence of the normalized horizontal drift force, FJpgA2sp, on a submerged circular 
cylinder with duration of simulation ro and order M. kA = 0.04, kR = 0.4, H/R = 2; and N ,  = 16, 
N,, = 64Nw, N ,  = 256, T/At = 64. 

T/At M = 2 M = 3  M = 4  

32 -1.0766 -1.0862 - 1.0893 
48 -1.0775 -1.0868 -1.0900 
64 -1.0784 -1.0876 -1.0907 

TABLE 5. Convergence of the normalized horizontal drift force, Fz/pgA2E2, on a submerged circular 
cylinder with integration time step At and order M. kA = 0.04, kR = 0.4, H/R = 2 ; and N, = 16, 
NF = 64N,, N,  = 256, ro = 5T. 

table 3 for a range of incident wave steepness, E = kA. Again, the exponential 
convergence with NF is achieved for any M ,  while that with M requires first that NF 
is adequately large. When the maximum local slope, eL, of the free surface (typically 
above the cylinder) exceeds - 0.4, however, the convergence becomes only algebraic. 
This has occurred, for example, for the case of E = 0.16 in table 3. 

We next show the approach to the steady-state limit (limit-cycle) of the forces on 
the cylinder by considering the convergence of (19) with 70. This is shown in table 4 
for different order M .  The steady-state limit is reached rapidly after T~ - 2T. Finally, 
we show the convergence of the numerical time integration with At in table 5. The 
expected O(At/T)4 global error is obtained provided that the solution to the 
boundary-value problem itself is sufficiently accurate. 

Unless otherwise stated, for all subsequent computations, we use Nw = 16, 
NF = 64Nw, NB = 256, r0 = 5T, and At = T/64. Based on the foregoing numerical 
tests, we anticipate the maximum error for Fz to be less than 1 %. 

5 FLM 245 
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In  addition to these convergence tests, all our computations are checked for the 
conservation of volume, I;" 7 dz, or alternatively the vanishing of the volume flux, 
j f L  vt dz (with qt given directly by (2a)) ; as well as the invariance of the total energy : 

where @: is the normal velocity on the free surface S,, and the first and second terms 
are proportional respectively to the kinetic and potential energies. For all later 
results we present, the volume flux is within - lop5, and the volume and total energy 
do not deviate by more than 1 % from their initial values. 

The force on the cylinder can also be obtained by applying the momentum 
theorem : 

where the unit normal vector n is positive out of the fluid. In all cases, the force from 
(21) compares well with that obtained by direct integration of the pressure (14) over 
the body surface. For the fourth-order horizontal drift force in $4.4, for example, the 
difference between the two is always less than 1 %. 

4. Numerical results 
We consider the diffraction of Stokes waves by a fixed, submerged circular 

cylinder. To facilitate comparisons to existing frequency-domain results, we first 
make explicit the relationships between the harmonic amplitudes obtained using the 
present high-order time-domain approach and those resulting from direct per- 
turbation methods in the frequency domain. We then present results for the high- 
order diffracted wave amplitudes, the oscillatory force coefficients, and finally the 
mean forces on the cylinder. Comparisons to theoretical, computational and 
experimental results are made whenever they are available. 

4.1. Relation to frequency-domain perturbation results 

Although the present approach is strictly a time-domain (initial-value problem) one, 
and steady and harmonic amplitudes are obtained via harmonic analysis of the limit- 
cycle time histories, these results can be related in a direct way to the linear and 
higher-order components of perturbation methods in the frequency domain. In a 
typical frequency-domain approach, the time dependence is factored out explicitly 
and the velocity potential written as 

a 
@ = Re(J,einwt), 

n=o 

where w = 27r/T. Each $,, is then expanded in a perturbation series in the wave 
steepness, E : 

and the boundary-value problems for JLm) are solved. 
In the present method, the initial-boundary-value problem for @(x, t )  is integrated 
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Ogilvie (1963) Vada (1987) Present results 

1.15 1.15 1.1406 (M = 1)  
- 0.28 0.2754 (M = 2) 

FZJPSRA 
Fz,lPgA2 

T2lkA - 2.65 2.7025 (M = 2) 

TABLE 6. Comparisons between existing frequency-domain and the present time-domain results for 
the (normalized) first- and second-harmonic horizontal force and the second-harmonic transmission 
coefficients. kR = 0.4, H / R  = 2 and kA = 0.08. 

accurately to the specified order M in 8. Despite the truncation at M (cf. (4), (5 ) ) ,  the 
presence of the nonlinear terms in (2) eventually causes all time harmonics to be 
present in @, in fact in each @(m).  Upon reaching limit cycle, the (complex) 
amplitudes of these harmonics are then extracted via Fourier decomposition : 

$hm) = 1 rT Gcm)(t) e-inwt dt, n = 1,2, . . . ; m = 1,2, . . . , M .  (24) 
' 0  

It should be pointed out that, in general, $hm), n > m (and also n = 0, m = l) ,  are 
small as expected but do not vanish. In  the high-order time-domain approach, there 
is no direct relationship between mth-order terms in (24) and those in (23) (cf. (7)).  
For direct comparisons then, it is useful to define the amplitude: 

M 

m-1 
$iM) = C q5irn), n = 1,2 , .  . ., 

where M is the order of the simulation. Note that the magnitude of $iM) is O(en) ,  
except for $6") which is of second order. With this notation, then, the amplitudes in 
(23) and (25) are related by 

&,2) = $ $ 2 ) + 0 ( ~ ~ ) ,  Wa)  
$r) = $iM)+0(sn+'),  n > 0, and M 2 n, (26b) 

while such simple relationships cannot, in general, be written for the amplitudes in 
(24). Similar formulae and results apply also to other quantities such as forces, wave 
amplitudes, etc. We remark finally that, in some sense, the present results are more 
'physical' in that they correspond directly to what one might measure in a 
laboratory. 
To illustrate the relationship between the present time-domain and existing 

frequency-domain results, we show in table 6 the correspondences (26) for the 
normalized harmonic forces and transmission coefficient. The frequency-domain 
values are taken from Ogilvie (1963) (first order) and Vada (1987) (second order). It 
is verified that the discrepancies are indeed of O(s)  or less. 

4.2. Diffracted waves 

For the diffraction of waves by a submerged circular cylinder in deep water, Dean 
(1948) and Ursell (1950) show that the linear potential produces no reflected waves 
and all incoming waves are transmitted downstream. This is confirmed experi- 
mentally by Chaplin (1984), suggesting further that the reflected waves may be 
small even to higher order. Recently, Palm (1991) proves analytically that the 

5-2 



126 Y. Liu, D. G. Dommermuth and D. K .  P. Yue 

n = M = l  n = M = 2  n = M = 3  

RiM> 0.0250 0.0025 0.0003 

TABLE 7. Harmonic amplitudes of the reflection coefficient for the diffraction of Stokes waves by 
a submerged circular cylinder, kA = 0.05, kR = 0.4 and H / R  = 2. The numerical parameters are 
N, = 16, N ,  = 6&Vw, N ,  = 256, T/At = 64, and T,, = 9T. 

leading-order part (at order m) of wave mode of frequency mw is not reflected. For 
the transmitted wave, however, experiments by Grue (1991) show that the 
amplitudes are significantly affected by the nonlinear interactions between the 
cylinder and the free surface. Here we compare the high-order spectral method 
predictions of the reflected and transmitted wave amplitudes to these analytical and 
experimental results. 

Expecting the reflected wave amplitude to be at most O(E,) ,  we write the free- 
surface elevation far upstream of the cylinder as 

~ ( x ,  t )  = a, cos ( k x - w t ) + ~ k a ~ c 0 ~ 2 ( k x - w t ) + ~ ~ ~ a ~ c o s 3 ( k x - w t )  

+a; cos ( k x + w t +  6;) +a; cos (4kx+ 2wt+ &) +a; cos (9kz+ 3wt+ 4) 
+ 0 ( € 4 ) ,  x < 0. (27 1 

Similarly, far downstream we write 

~(z, t )  = b,~~s(kz-wt+S,) + $ ' ~ b ~ ~ 0 ~ 2 ( k ~ - ~ t + 6 , ) + ~ k ~ b ~ ~ 0 ~ 3 ( k x - w t + 6 , )  

+ b , c o s ( 4 k ~ - 2 w t + 6 , ) + b , ~ 0 s ( 9 k x - 3 w t + S , ) + O ( ~ ~ ) ,  z > 0. (28) 

The reflection and transmission coefficients for each harmonic are defined accordingly 
by R,  = a;/a,, R, = ai/a,, R, = a;/a,, and T, = b,/a,, T, = b,/a,, 

In numerical simulations, we record the time series of the free-surface elevation at 
a location far upstream (at x = -8R), and another far downstream (z = 8R), the 
latter corresponding to the measurement position of Grue (1991). A t  these positions, 
the limit cycle for the surface elevation up to third harmonics is approached after 
typically T,,/T - 7-8. (The simulations themselves are typically stopped after - 10T 
before any appreciable effects due to  images of the periodic boundaries are felt.) The 
harmonic amplitudes of the transmitted and reflected waves are then obtained via 
Fourier analysis of the limit-cycle time histories at these two locations. 

To study the effect of nonlinearity on wave reflection and transmission, we first fix 
kR = 0.4 and kH = 0.6, and consider the dependence of R ,  and T, on the incident 
wave slope kA. For the reflected wave amJlitudes, the dominant contribution for 
each n > 0 harmonic is at  order m = n, i.e. RC).  In  view of (26), this can be estimated 
to leading order by R P ) .  Table 7 shows a typical example for kA = 0.05. It is seen 
that RP), n = 1 ,2 ,3 ,  is at  most of 0(C) and is at least one order higher than the 
transmission coefficients (which are O( 1)).  These (limited) results provide a direct 
numerical confirmation of the analytical predictions of Palm (1991). 

The dependence of the first-harmonic transmission coefficient, T,, on incident 
wave steepness E = kA is shown in figure 1.  For linear theory, = 1 and is not a 
function of E .  However, the measurements of Grue (1991) show that in fact 
decreases appreciably from 1 as E increases. Our converged numerical results confirm 
this nonlinear dependence quantitatively up to E - 0.08. (Beyond e - 0.08, extensive 

= b,/a,, etc. 
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0.02 0.04 0.06 0.08 

kA 
FIGURE 1 .  Dependence of the first-harmonic wave transmission coefficient on the incident wave 
slope kA. Experiments (Grue 1991) (0 )  ; linear solution (-) ; and present high-order results for 
M = 2 (A), M = 3 (m), and M = 4 (0) .  (kR = 0.4, H/R = 1.5.) 

0.8 i- 

0.02 0.04 0.06 0.08 

kA 
FIGURE 2. Dependence of the second-harmonic wave transmission coefficient Tp on the incident 
wave slope kA. Experiments (Grue 1991) (0 )  ; second-order computation (Vada 1987) (-) ; and 
present high-order results for M = 2 (A), M = (m), and M = 4 (0) .  (kR = 0.4, H/R = 1.5.) 

wave breaking over the cylinder is reported by Grue 1991. For clarity, these 
experimental data points are omitted from this and subsequent figures.) From figure 
1, we also conclude that it is necessary to include third-order (M = 3) contributions 
to correctly account for the behaviour of q. 

Figure 2 shows comparisons for the second-harmonic transmission coefficient T2 
among our high-order numerical results, Vada’s (1987) second-order frequency- 
domain computations, and Grue’s ( 1991) experimental data. The strong nonlinear 
interactions over the cylinder result in a significant reduction of from the second- 
order perturbation result (which predicts a linear dependence on €). Although our 
numerical results show some indication of convergence at M = 4, comparison to the 
measured data indicates that even higher-order effects are present in T, for near- 
breaking conditions. 

Figure 3 summarizes the dependence of transmitted wave amplitudes on E = kA 
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k A  
FIQURE 3. High-order spectral solution (2M = 4) of harmonic wave transmission coefficients 

T,, T,, q, T4 as a function of incident wave slope kA. (kR = 0.4, H/R = 1.5.) 

FIQURE 4. Dependence of the first- and second-harmonic wave transmission coefficients on the body 
submergence H / R .  Experiments (Grue 1991) (0) ;  and present high-order results for M = 2 (A), 
M = 3 (m), andM = 4 (0) .  (kR = 0.4, kA = 0.08.) 

for this case ( k R  = 0.4, kH = 0.6). Also shown are our predictions for T3 and T4 which 
have been obtained for the first time. It is interesting to note that as E increases 
beyond -0.055, T,  decreases while continues to grow, so that for steep waves 
( E  > -0.065) T3 becomes greater than T,. A direct experimental confirmation 
for these very high harmonics, however, may be difficult and has not yet been 
obtained. We caution that the present results for T3 and T4 have been obtained up 
to M = 4 only. Although the dominant components are included, higher values 
of M may lead to some reductions of their amplitudes (cf. figure 2). 

Finally, we study the dependence of T, on the body submergence H I R  by fixing 
kR = 0.4, kA = 0.08 and consider varying kH. The numerical results for and T, are 
shown in figure 4. For this case, two experimental points at H I R  = 1.5 and 2 are 
available from Grue (1991). For large H / R ,  TI approaches 1 rapidly, while T, 
decreases monotonically. The coefficients are overpredicted by these asymptotes, 
however, as the cylinder approaches the surface and nonlinear effects evidently 
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KC 
FIGURE 5. The first-harmonic horizontal force F,, as a function of Keulegen-Carpenter number K,. 
Experiments (Chaplin 1984) (0) ; linear result (Ogilvie 1963) (-) ; and present high-order results 
forM = 4 (0). (kR = 0.21, H / R  = 2.0.) 

Or 

- 7 . 5 1 , ,  , , , , , , , , , , , , , , , , * ,  , , , , , , , , , 

-2 - 1  0 

In K ,  
FIGURE 6. The second- and third-harmonic horizontal forces F,,,F,, as a function of 
Keulegenxarpenter number K,. Experiments (Chaplin 1984) (0)  ; and present high-order results 
with M = 4 for Fz2 (m) and F,, (0). (kR = 0.21, H / R  = 2.0.) 

become important. This is seen from the differences among the results for M = 2, 3, 
and 4. Indeed, comparison with experimental data suggests that even higher-order 
interactions play a role. 

4.3. Oscillating forces 

As demonstrated in table 4, the limit cycle for the force time history is reached 
rapidly after 70/T - 3. The amplitudes of the force harmonics are then obtained 
using Fourier analysis (with 70/T = 5 ) .  

Figure 5 shows comparisons for the first-harmonic horizontal force amplitude F,, 
among our high-order (M = 4) numerical results, linear (potential flow) analytic 
solution (Ogilvie 1963), and experimental measurements of Chaplin (1984). Following 
Chaplin, we plot Fxl here as a function of the KeuleganXarpenter number defined as 
K ,  = xe-kHA/R, which is based on linear deep-water waves. Comparing just the 
theoretical and computed results, it is remarkable that the first-harmonic amplitude 
is affected very little by nonlinear effects at least up to K ,  - 1. On the other hand, 
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0 
1.50 1.75 2.00 2.25 

- 10.0 
1.50 1.75 2.00 2.25 

H I R  H I R  
FIGURE 7. (a) Horizontal and ( b )  vertical drift forces as functions of body submergence. 
Experiments (Miyata et al. 1988) (0); linear potential solution (Ogilvie 1963) (-.-); and present 
high-order results for M = 2 (A), M = 3 (m), and M = 4 (0) .  (kR = 0.4, e = kA = 0.12.) 

as suggested by Chaplin, effects of (clockwise) circulation around the cylinder result 
in a sharp decrease of F,. for K ,  > - 0.5 (possible effects of flow separation and wave 
breaking also cannot be ruled out). Our numerical results also show a reduction due 
to  nonlinear diffraction but the magnitude is small compared to  that due to 
circulation or real fluid effects. 

I n  direct contrast to the first-harmonic force, circulation does not appear to  affect 
the higher-harmonic forces as shown in figure 6 for Fx2 and Fx3. The higher-order 
(potential flow) results are in excellent agreement with Chaplin’s data up to K ,  - 1,  
beyond which the effects of wave breaking most likely are important. The computed 
data also readily confirm the expected quadratic and cubic dependencies respectively 
of F,, and Fx3 on the Keulegan-Carpenter number. 

4.4. Mean forces 
We finally turn to the steady (drift) force on the cylinder which is the main focus 
of this study. First, we show the dependence of mean forces on body submergence by 
varying kH with fixed kR = 0.4 and ICA = 0.12. This is shown in figure 7 where our 
high-order calculations using M = 2 , 3 , 4  are compared with the measurements of 
Miyata et al. (1988). The horizontal drift force Fx, figure 7 (a) ,  is negative (against the 
direction of wave propagation) with a magnitude which increases, as expected, with 
decreasing submergence. Except for relatively shallow submergence, H / R  < - 1.75, 
the numerical predictions agree well with measurements. Since our computations do 
not account for wave breaking, it is evident that nonlinear diffraction effect rather 
than wave breaking is the dominant cause of the negative drift force. For HIR < - 1.75, extensive wave breaking is observed in the experiments, and the magnitude 
of the negative drift force is smaller compared to  the diffraction results. This provides 
some evidence that the presence of wave breaking may lead to positive mean 
horizontal force on the cylinder. 

For the mean uplift force Fv, figure 7 ( b ) ,  our numerical results compare well with 
both the second-order analytic solution (Ogilvie 1963) and the measurements of 
Miyata et al. (1988). Higher-order interactions and wave breaking effects are 
evidently less important for the vertical mean force. 

It is clear that since F, = 0 up to second order in wave steepness (Ogilvie 1963), the 
next available contribution is a t  most fourth order. Likewise, one may expect a 
fourth-order correction to the second-order Fu. These expectations are confirmed by 
our calculation of the mean forces for varying incident wave slopes kA (fixing kR = 
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kA 
FIGURE 8. Dependence of the horizontal and vertical drift forces on the incident wave slope 

8 = kA. M = 2 (A), M = 3 (m), and M = 4 (a). (kR = 0.4, H / R  = 2.) 

0.4 and lcH = 0.8). Figure 8 shows the numerical results (M = 2,3,4)  for F, and Fu 
which have been normalized by their expected leading-order magnitudes pro- 
portional to e4 and e2 respectively. As expected, these normalized values approach 
constant asymptotes for small kA. For the mean uplift force, this asymptote is well 
predicted by the second-order value based on the (analytic) first-order potential only. 
Hereafter, we concentrate on the ‘truly’ nonlinear horizontal drift force. 

To assist us in understanding the horizontal drift force results, it is useful to obtain 
an estimate based on the conservation of energy and linear horizontal momentum. 
We neglect wave reflection (cf. $4.2) and consider the incident/transmitted wave 
amplitudes far up/down stream of the body. Let a,  and b, be the nth harmonics of 
the incident and transmitted wave amplitudes respectively. Following Longuet- 
Higgins (1977), we further assume that all a,, b,, n = 1 , 2 , .  . . are of the same order of 
magnitude and consider only ‘ bi-linear ’ interactions. With this assumption, 
application of the conservation of horizontal momentum yields an expression for the 
horizontal drift force which, to leading order, is given by 

- P9 
F, = C (ai-b:). 

It-1 

From the conservation of energy, a, and b, are related by 

(29) 

n-1 12-1 

For Stokes incident waves, the first-harmonic amplitude a, is much greater than all 
other harmonics, so that we can neglect all a,, n > 1 terms in (29) and (30). 
Substituting (30) into (29), we obtain finally 

P9 F’ = -- C bi(n-l)/n. 
4 n-2 

Equation (31) provides a way to estimate Fz given the transmitted wave harmonic 
amplitudes, and is a generalization of a result of Longuet-Higgins (1977) who 
included the first (b2 )  term only. Note that in view of the ‘bi-linear’ assumption, 
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k A  
FIGURE 9. Comparison of the horizontal drift force as a function of wave slope kA. The results are 
from direct high-order simulation with M = 4 (-); equation (31) using b, only (---); and 
equation (31) including b, and b, (--.-). (ICR = 0.4, H / R  = 1.5.) 

higher-order interaction terms involving different harmonics (especially in the 
transmitted waves) are neglected in (29) and (30). Therefore (31) must be considered 
only as an approximate formula valid primarily for small wave steepness. 

The prediction using (31) based on computed transmitted wave amplitudes is 
compared to that obtained by direct pressure integration in figure 9, where Fx is 
plotted as a function of kA. For small wave slopes, kA < -0.03, (31) with only bz 
provides an adequate estimate. As kA increases further beyond -0.05, b, reaches its 
maximum (cf. figure 3) and consequently so does the estimated drift force based on 
b,, while the actualFz continues to increase. The prediction based on (31) is improved 
if third-harmonic transmitted waves are taken into account, and the discrepancy is 
not appreciable until after kA - 0.05. Not completely unexpectedly, applications of 
(31) with even higher transmitted wave harmonics included (not shown) do not 
produce appreciable further improvements unless wave reflection and higher-order 
interactions are also considered. In  so far as independent ways are used to obtain Fx, 
figure 9 can be considered a further validation of our predictions of the fourth-order 
negative drift force. 

In the context of a frequency-domain perturbation approach, we see from the 
expression for the pressure on the cylinder (14) that steady forces must be due to 
quadratic interactions of the perturbation potentials 4Lrn). Specifically, the horizontal 
drift force on the circular cylinder is given, up to fourth order in the wave slope, by 

PX - rdORcosO(V&)-V@)* +2V4i1)-V4i3)* 

+VJp)-VJr)* + V$f)-Vr$r)* + c.c.), (32) 

where * denotes complex conjugate, and C.C. the complex conjugate of the preceding 
terms. Equation (32) is obtained by direct integration of the pressure over the 
cylinder and taking the time average. 

As shown by Ogilvie (1963), the first term in (32), which is second order, makes no 
contribution to the mean force, so that the drift force results from the remaining 
three fourth-order terms. For later convenience, we denote the second, third and 
fourth terms in (32) by Fll, F,,, and Fnn respectively. With the present accurate high- 
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order (albeit time-domain) results, it  is possible to deduce the respective 
contributions of Fll, F22, and Foo to F,. (We solve the problem up to M = 3, obtain the 
steady-state potential c D ( ~ ) ,  from which we determine the amplitudes $y), $j3), and 
$63) via harmonic analysis. Using (26), we calculate F22 and Foo to leading (fourth) 
order using $63) and $i3) instead of &j2) and &h2). Finally, since there is no drift force 
due to (and there is no @), we deduce that Fll is produced by the self-interaction 

The drift force components Fll, F22, and Fo0 are plotted in figure 10 as functions of 
H/R. As expected, all three components have magnitudes that diminish with body 
submergence. Overall, the magnitude of Too is much smaller than Fll and F22, which 
implies that the self-interaction of zeroth-harmonic waves has negligible effect on F,. 
More importantly, we note that for any body submergence, F22 is non-negative, while 
Fll is always negative and much greater in magnitude. Thus, the negative horizontal 
drift force is a result of the difference between these two magnitudes. An immediate 
consequence of this is that one indeed needs to solve the third-order perturbation 
problem to obtain Fx, and a frequency-domain solution up to and including $2), for 
example, is inadequate, and in fact would produce the wrong sign for the horizontal 
drift force ! 

One advantage of having identified the components in (32) is that one can now 
deduce how Fx would, in principle, attenuate with body submergence. Specifically, 
for small kR, we expect the self-interaction of first-harmonic waves to decay as Fll - e--2kH , and that for second-harmonic waves as Pz2 - ePkH. These are qualitatively 
confirmed in figure 10 (although the actual attenuation rates are somewhat slower, 
probably due to the effect of finite body radius). By accounting for these submergence 
dependencies (and magnitudes) of Fll and F22, it is evident that in general F, is 
negative and dominated by Fll except possibly for small submergence. A5 kH 
decreases, F22 increases more rapidly than Fll, so that a t  very shallow submergence, 
the magnitude of the negative drift force may be reduced appreciably by F2z. This is 
in qualitative agreement with the experimental observations of Miyata et al. (1988) 
and Inoue & Kyozuka (1  984). 

Finally, we point out that by considering the radiation stress (Longuet-Higgins 
1977), the horizontal drift force is related to the mean set-down above the cylinder. 
Figure 11 plots the separate contributions to the mean set-down associated with F22 

of $j3).) 
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X l R  

FIQURE 11. Separate contributions associated with the self-interactions of the first-harmonic ( )11 
and second-harmonic ( )22 waves to the mean free surface: iill/kAz (-.-); qz2/kA2 (---); and the 
mean pressure on the cylinder surface: 5p,,/pgkA2 (-.-); 5pzz/pgkA2 (---). Pressure is plotted 
positive into the body. (kR = 0.4, H / R  = 1.5, kA = 0.04.) 

and Fll. The corresponding time-averaged pressure distributions on the cylinder 
associated with these two interactions are also shown. The larger (smaller) 
downstream mean set-down for PZ2 (Fll) and the distribution of the mean pressure 
provide immediate qualitative confirmation of the positive (negative) sign and 
magnitude of its contribution to Fz. (Note that this is not inconsistent with figure 9 
since b,  depends on 6i3).) 

When the body submergence is sufficiently small and/or the incident wave 
steepness is sufficiently large, wave breaking above the cylinder must be expected 
and the present method and results are no longer applicable. It has been suggested 
(Longuet-Higgins 1977) that wave breaking provides the dominant contribution to 
the negative drift force. This is not completely supported by measurements (for 
example, Miyata et al. 1988), which indicate that as the body submergence is reduced 
and wave breaking therefore enhanced, the magnitude of the negative drift force 
may, in fact, decrease. Although the present method is not valid for breaking (and 
near-breaking) waves, our results compare well with experimental data (not in the 
breaking range) and explain the potential flow mechanism for the negative drift 
force. Not insignificantly, we are also able to offer an explanation for the observed 
decrease of its magnitude with small submergence (due to pZz) which may occur even 
in the presence of intensifying wave breaking. 

5. Conclusions 
An arbitrary high-order spectral method has been developed to study the 

nonlinear interactions of waves with a submerged body. By using global spectral 
representations for the body and free-surface singularity distributions, exponential 
convergence with the numbers of.body and free-surface modes and with perturbation 
order M is achieved. With the use of fast transform techniques, the computational 
burden remains effectively a linear function of the number of unknown modes and 
of M .  

To illustrate the efficacy of this method, we perform a detailed study of the 
nonlinear wave diffraction by a submerged circular cylinder. Extensive convergence 
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tests are carried out to validate the accuracy and its dependence on the 
computational parameters. Results are presented for the harmonic amplitudes of the 
transmitted and reflected waves, and the mean and harmonic amplitudes of the 
forces on the cylinder. Corroborations with theoretical and computational predictions 
and experimental measurements are made whenever they are available. The 
comparisons are in uniformly good agreement. Of special interest is our quantification 
of the horizontal drift force which is fourth order in the incident wave steepness and 
negative, and is shown to be primarily a result of the interaction between the first- 
and third-order first-harmonic waves. 

We remark that the present method can be immediately generalized to three 
dimensions and to problems with forward speed. In the former case, the expansions 
(8) are simply replaced by a double-Fourier series for the free surface, and a 
Fourier-Chebyshev expansion, say, for the submerged body : 

where v, 8 are respectively the polar and azimuthal angles of a point on the body 
surface with respect to its centre. 
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